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SUMMARY

The resource industry seeks to forecast accurately the likely
outcome of an exploration program - in particular minimum and
maximum and average size of a success; also the chance of
achieving a success.

Commonly such predictions are employed on a project-by-
project basis. When a group of projects are combined in a
portfolio, a higher level of evaluation is possible by quantifying the
correlation coefficients among the projects. The outcome is that
the portfolio total is not necessarily the sum of the individual parts.
Combining the best individual projects usually does not produce
the most efficient (lowest uncertainty) portfolio. Including some
‘risky’ projects (larger uncertainty) can lower the overall
uncertainty of the portfolio.

Ranking projects by common measures such as Expected
Monetary Value or Expected NPV are not the best approach to
building a portfolio.

The approach in this paper draws on financial portfolio theory.
This is routinely employed in the financial industry, which faces a
similar challenge of forecasting outcomes (from investments). It is
suggested that combining the better elements of resource and
financial evaluations produce a more definitive prediction of the
outcome of an exploration program.

Analysing projects within a portfolio structure reduces the
uncertainty in the range of deposit success-case sizes that may be
encountered. It allows selection of the most efficient group of
projects. This maximises the expected NPV value for the total
portfolio, while at the same time minimising the uncertainty in the
range of NPVs that could occur.

Furthermore, if projects are selected with low correlation
coefficients with each other (‘diversification’), then the chance of
obtaining one success is increased, compared to projects that are
more positively correlated.

INTRODUCTION

The resources industry, when considering how best to short-list
which exploration projects to undertake, naturally desires to
accurately predict the likely result of each project. This paper
considers not only this challenge, but more so the overall economic
consequence when a group of exploration projects is combined in
a portfolio.

We seek to define the most ‘efficient’ portfolio, where
exploration returns are maximised and uncertainty is minimised.
Combining the best individual projects usually does not produce
the most efficient portfolio. Counter-intuitively, including some

larger uncertainty projects may actually lower the overall
economic uncertainty.

Before exploration of a project is commenced, or continued
after additional data is obtained, success-case predictions are made
of deposit average size; additionally predictions may include
minimum and maximum sizes. This range for the deposit size may
be two-three orders of magnitude, which can be disturbing to those
unfamiliar with the estimation process. In addition to these
predictions, the chance of achieving a ‘geological’ success, or
other similar measure, is estimated.

The financial industry, when making an investment, faces a
similar challenge to the resources industry in forecasting the likely
result - instead of deposits, the focus is size of investment returns.
While methodologies of both industries have a number of
similarities, there are some significant differences. This paper
reviews the methodologies of both industries. Amalgamating the
better predictive elements from both industries produces more
accurate predictions for the resources industry.

The 1990s have seen a small, but growing, number of technical
papers discussing the application of financial techniques to the
resources prediction. The focus is how to optimally combine
resource projects in a portfolio - how can we reduce the
uncertainty in the predicted range of the overall result. In addition,
and counter-intuitively, how to increase the chance of one success
by judiciously selecting the optimum portfolio.

ECONOMIC EVALUATION OF PROJECTS

Resource Deposit - Range of Sizes

The first steps in the evaluation of a project determines the size
(big/small) of a resource deposit (or size of returns from an
investment); then estimate the chance that it could be in this range
of sizes.

This process is achieved by firstly predicting the type of
distribution (eg normal, lognormal, other) controlling the
deposit/investment; secondly the range for the sizes of the
deposit/investment (eg from low, median, mean or highside
values). While debate continues with respect to the type of
distribution controlling the range of sizes, there is interestingly
considerable support for a lognormal observation for both
geological deposits (eg Steinmetz 1992, McCray 1975, Singer and
Orris 1994) and for investments (eg Lewis et al 1980, Grinold and
Kahn, 1999). It is pertinent to note that financial portfolio theory,
proposed by Markowitz in the 1950s, assumed a normal
distribution for investment returns (Bernstein, 1996).

Generally, the resource estimation process breaks out several
factors that independently contribute to the size of the deposit (eg
source and reservoir space). The type of distribution for each factor
is determined, either from empirical data or analogues. Next,
appropriate assumptions are made for each distribution e.g. its
minimum, average or maximum size. These separate distributions
are then combined, either by Monte Carlo or serial multiplication,
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to estimate the range of sizes of the deposit. From this, the
probability can be determined of achieving any given subset of this
range.

It is important to distinguish between most-likely and mean
values. These are not the same value, unless the overall distribution
is normal. If only one number is required to quantify this
distribution, the mean value is selected. This value is the mean
deposit size, which after economic analysis becomes the mean NPV.

To quantify the uncertainty (range of sizes) for the
deposit/investment, the standard deviation can be computed.
[In the financial world, the standard deviation is called the ‘risk’ of
an investment. Note this meaning of risk is quite different to the
resource industry, which expresses risk as the geological
chance-of-failure].

Resource Project Geological Chance-of-Success

The next step for the resource industry is to quantify the
geological chance-of-success that the deposit will fall in the
defined range. This chance is determined from the serial
multiplication of a number of geological factors controlling the
size of the deposit. In the simplest case, each of these geological
chance factors is independent. An additional complication does
occur when some of these factors are dependent. [The financial
industry does not have this level of analysis - it assumes that the
chance is 100% of being in the range. This assumption is one area
where the financial estimation accuracy could be improved, if it
were to follow the resource approach].

Additional sophistication is possible by quantifying
commercial chance-of-success, given a minimum commercial
size. The commercial chance is lower than the geological chance,
continually altering with economic and market conditions. The
geological chance is constant until new geological data is obtained.

Project Ranking Methodology

Usually there is a cap on exploration funds, such that an
explorationist has to choose from a subset of the available projects.
Furthermore, it is not only required to rank projects, but also to
predict the likely economic outcome after addressing a group
(portfolio) of projects.

The evaluation of a group of projects begins with determining
each project's Expected Value (EV) and Expected Monetary Value
(EMV).

These are defined as:
EV = Mean NPV * geological chance-of-success.
EMV = (Mean NPV * geological chance-of-success) –
(Failure NPV * geological chance-of-failure).

The failure NPV is usually the cost of the exploration program,
or the cost of contributing additional funds once a project is
underway.

Commonly projects are ranked by EMV, with the best projects
regarded as those with the highest positive EMV (Newendorp
1975; Downey 1977). The EMV value incorporates the risk
weighting of the estimated value of projects. When a company
chooses to participate in a project that has a negative EMV, the
company is speculating (= gambling), as opposed to a positive
EMV project where it is investing.

The focus of this paper will show that ranking projects by EMV
alone is not the optimum solution for a portfolio.

ILLUSTRATIVE EXAMPLE

To illustrate the concepts of this paper, consider the exploration
data for two projects summarised in Table 1:
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Table 1. Summary data for projects A and B.

Both projects have the same exploration cost ($2m). Project A
has a much higher chance of success, offset by a lower success
case NPV. Project A has a slightly more positive EMV, whereas
project B has a higher Expected Value. Project B has the higher
uncertainty, as expressed by the standard deviation.

Assume there is a budget cap of $2m (the failure NPV). What
should an explorationist do?
• Invest $2m in project A, because it has the higher chance of

success, or
• Invest $2m in project B, because it has a higher EV, and if

successful a higher NPV, or
• Through a joint venture, split the $2m between A & B - if so,

which ratio is optimum?

Let's also assume we are desperate for at least one success.
What difference does this make in how we should choose between
these projects?

Financial Industry Diversification

The financial industry, when deciding on which investments to
combine in a portfolio, generally cross-plots two measures of an
investment - expected returns and uncertainty.

The expected returns are computed by the multiplication of
possible returns and individual probability. Say four returns are
estimated with associated probabilities (-10% & 0.3),(7% & 0.2),
(12% & 0.4) and (20% & 0.1). The expected value is 5.2%.

The uncertainty is quantified as the standard deviation of the
returns. In the above case, the uncertainty is 12.7%, assuming a
normal distribution. The financial industry usually selects those
investments that have a higher return, for a given uncertainty. The
above analysis is appropriate when there is only one investment.
When more than one investment is combined in a portfolio, the
standard deviation is measured from the covariance of the
investments. This is not the weighted average of the individual
standard deviations. Covariance is a mathematical measure of the
similarity between two distributions, as opposed to variance of a
single distribution about a mean value.

Grinold and Kahn (1999) give the standard deviation for a
portfolio with two projects as:

σP = √ [ (%A σA )2 + (%B σB )2 + 2 (%A %B CAB)]

where %X = percentage of project X in the portfolio and CAB is the
covariance between the two investments A and B.
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The correlation coefficient ρAB, however, is a more direct way
to determine the portfolio standard deviation. The correlation
coefficient ranges between 1.0 (perfect correlation) to -1.0 (perfect
180° phase correlation), and is about 0.0 when there is little
correlation. Financial investments can have a correlation
coefficient predicted from the analysis of the time series of prior
returns of the investments, as well as crystal-ball gazing on the
myriad of economic factors that control the returns (eg economic
stability, balance-of-payments, inflation, etc).

Camina and Janacek (1984) show the correlation coefficient is
given by

ρAB = CAB

σAσB

so σP = √ [ (%A σA )2 + (%B σB )2 + 2 (%A σA ) (%B σB ) ρAB ].

Mathematical inspection shows the portfolio standard deviation
σP ≤ %AσA + %BσB. The equality holds only if the two investments
are perfectly correlated (when ρAB = 1). Since this is very rare,
combining investments in a portfolio reduces the standard
deviation (uncertainty). This is the underlying mathematical basis
of the argument for financial diversification of ‘not putting all your
eggs in one basket.’ The resource industry commonly applies this
approach in the exploration phase by selecting projects that are
geographically widely separated.

The standard deviation for the portfolio of varying proportions
of projects A and B is graphed in Figure 1 for correlation
coefficients ranging from 1.0 to -1.0. In this example, for say a
correlation coefficient of 0.0, the minimum standard deviation is
$8.3m. This demonstrates being in a portfolio lowers the
individual standard deviations (project A $10m, project B $15m).

Portfolio theory aims to maximise the Expected Value while
minimising the uncertainty. For a correlation coefficient say 0.0,
the optimal solution is EV $3.1m and uncertainty $8.3m for A:B
70%:30% (Figure 2). Thus splitting the budget in this manner
provides a better solution than investing the whole budget in
Project A (EV $3.0m and uncertainty $10m), even though A might
be preferred on an EMV basis alone.

Efficient portfolios are those that show the highest expected
value for a given level of uncertainty. Markowitz (1952, 1957)
introduced this concept to the financial world, for which he was
later awarded the Nobel Prize for Economics. Figure 3 shows that
both projects A and B on their own are inefficient - for their
individual levels of uncertainty, there are better solutions
(portfolios) that have higher Expected Values.

The power of investment diversification is explored by Grinold
and Kahn (1999):

• Given a portfolio of N projects, each with uncertainty s and
uncorrelated returns, the uncertainty of an equal-weighted
portfolio of these projects is:

σP = σ
√ N

Thus combining the projects in a portfolio reduces the overall
uncertainty from σ to σ /√ N.

• Assuming the correlation between all pairs of projects is r, the
uncertainty of an equally weighted portfolio is:

σP = σ √ [(1 + ρ (N-1) ) / N].
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Fig. 2. Optimum solution of lowest uncertainty relative to Expected
Value is 30% project B & 70% project A.

Fig. 3. Neither projects A nor B are optimum on their own. The most
efficient combination is 70%A : 30%B, which is on the ‘Efficient
Frontier.’ It is not possible to have results above the Efficient Frontier.

Fig. 1. Combining projects in a portfolio reduces resultant uncertainty,
depending on correlation coefficient.

In the limit that the portfolio contains a very large number of
correlated projects, this becomes:

σP _→ σ √ ρ.
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will increase the chance of one success. This helps if total failure
(no successes) could affect job security!

A methodology for calculating the probability of the outcomes,
given the various independent probabilities and correlation
coefficients, is yet to be developed.

As noted in the Introduction section, there is not universal
acceptance for the type of distribution controlling a resource
deposit. Common types of distributions used include normal,
lognormal and triangular. The financial methodology discussed
above assumes a normal distribution. If the resource distribution is
lognormal, though, then the standard deviation will be over-
estimated because of the high-side outliers.

Another difficulty associated with analysing a portfolio occurs
when the projects have different distributions within and between
each project.

Geological Correlation Coefficient

To maximise the expected return of a portfolio, ideally each
project's correlation coefficient must be determined with every
other project. Determining the coefficient includes considerations
such as:

• resource size (affects the duration of the project)
• dependent / independent factors in the chance-of-success
• similarity of geological areas
• future capital and operational costs
• future resource prices
• market similarities
• country (political) risk.

For X projects in a portfolio, we require X estimates of the
standard deviation and X(X-1)/2 correlations (Grinold and Kahn,
1999). Thus for 10 projects in a portfolio, required are 45
correlation coefficients. These are not an easy matter, nor quick, to
define. Therefore, implementation of efficient portfolio theory
requires a decision on how rigorous does the analysis need to be.
Options could include:

• painstakingly determining each of these correlations, or
• grouping similar projects to reduce the number of correlations,

or
• applying a variation of the ’structural risk model covariance’

approach of Grinold and Kahn (1999), or
• Ball and Savage (1999) have developed an approach using

Monte Carlo and linear programming techniques.

Compromises may need to be made in the process. The
important issue is to ask the right questions when constructing the
portfolio - realising that selecting the best individual projects are
unlikely to produce the most efficient portfolio.

To adapt financial portfolio theory to resource projects,
determining the correlation coefficient should focus on the likely
time series of the annual profit-returns for a project. More
investigation is required on how best to determine these correlation
values. It is suggested that the geological correlation coefficients
could range from near zero to low positive numbers.

CONCLUSIONS

Accurate forecasting of the likely result of an exploration
program is essential - in particular forecasting the average size of
a success, the minimum and maximum sizes, together with the
chance of achieving at least one success.

Moriaty

Fig. 4. Indicative effect of strong correlation coefficient on number of
success (positive correlation increases chance of none and two
successes; negative correlation increases chance of one success).

DISCUSSION

The application of financial portfolio theory to resource
projects requires discussion of two matters:

• how does the prediction of the number of successes alter when
projects are grouped in a portfolio

• how to quantify the geological correlation coefficient.

Effect on Number of Successes

In answer to does it make a difference if we are desperate for at
least one success, notice the indicative effect of positive and
negative correlations on the number of successes (Figure 4 - actual
probability values depend on the individual correlations and
chances of success). In essence, positive correlation reduces the
effect of diversification, whereas negative correlation increases the
effect.

Consider the situation where the two projects are positively
correlated. The following qualitative discussion analyses the
probabilities. If project A is successful, the probability of success
for project B will now be greater than 13%. Thus the probability of
two successes is increased if the correlation is positive. Now, since
the probability of success for project A is less than 50%, it is more
likely that A will fail. Given a positive correlation, the chance of
success for B is now less than 13%. Hence for positive correlation,
the probability of no successes is increased, compared with the
probability if the projects are not correlated. Overall, we note that
if there is positive correlation, the chance of one success is
decreased.

Now consider the situation where projects are negatively
correlated. If project A is successful, the probability of success for
project B will now be less than 13%. Thus the probability of two
successes is decreased if A is successful, compared with
independent or positively correlated projects. However, since the
probability of success for project A is less than 50%, it is more
likely that A will fail. Given a negative correlation, the chance of
success for B is now more than 13%. Hence for negative
correlation, it is more likely that there will be one success than if
the projects are independent or positively correlated, since the
chance of project A occurring is the same regardless of correlation.
The increase in probability of one success comes from a reduction
in the chance of none and two successes.

The basis of economic diversification is to seek projects that
have the lowest correlation. The result, all other things being equal,
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Although such predictions are common in the resource
industry, a higher level of evaluation is obtainable if efficient
portfolios are sought. Quantifying the correlation coefficients
among resource projects, while problematical, should be
mandatory if a company wishes to maximise its expected return
while minimising the economic uncertainty of an exploration
program.

Intuitively, the procedure of spreading exploration projects over
a variety of areas is commonly employed now. This paper suggests
the efficiency of the given selection of projects can be quantified.
Additionally, it is possible to decrease the chance of failure and
increase chance of one success, albeit at the expense of achieving
more than one success.

A mathematical issue with the method proposed in this paper is
the assumption that the controlling distribution is normally
distributed (Bernstein, 1996). A lognormal distribution, because of
the outliers on the high side, has a larger uncertainty (standard
deviation) than a uniform distribution with the same mean value. A
lognormal distribution, skewed to the upside, has most-likely
values that are smaller than the mean.

The computed uncertainty of a lognormal distribution will
overestimate the most-likely uncertainty of each project, so that
the portfolio uncertainty also is overestimated. However, the basic
premise of the effect of diversification still holds.

During the 1990s, there has been increasing application of
financial theory to resource projects (eg see Capen in Steinmeitz,
1992); MacKay (1996) reviews the growing use of portfolio
theory; Ball and Savage (1999) have proposed an approach based
on Monte Carlo and linear programming.

Some financial analysts continue to criticise aspects of the
Markowitz theory, disputing aspects such as efficient markets. The
mathematical basis of diversification, though, is a separate issue
and has held up, It is now is the mantra of financial investors.
While diversification does not guarantee a success, it does increase
the chance of one success. Diversification power is now being
unleashed on the resource industry, as companies seek an edge in
an increasingly competitive world.
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